
CSE 333
Section 1
C, Pointers, and Gitlab

1

Logistics
● Pre-Quarter Survey:

○ Due Friday (tomorrow!) @ 11:59pm (1/06)
● Exercise 1:

○ Due Monday @ 11:00am (1/09)
● Homework 0:

○ Due Monday @ 11:59pm (1/09)
○ Meant to acquaint you to your repo and project logistics
○ Must be done individually (future HW in partners)

2

Icebreaker!

Please turn to the people next to you and share:

● Name and Year

● What are you excited about in 333?

● Favorite type of peanut butter (Creamy, Chunky, no preference/allergic)

3

Pointer Review

4

Pointers

● Data type that stores the address of (the lowest byte of) a datum
○ Can draw an arrow in memory diagrams from pointer to pointed to data,

particularly if actual value (stored address) is unknown

5

● Common uses:
○ Reference to data allocated elsewhere (e.g., malloc, literals, files)
○ Iterators (e.g., data structure traversal)
○ Data abstraction (e.g., head of linked list, function pointers)

Pointer Syntax and Semantics

● Declared as type* name; or type *name;
○ Doesnʼt matter, just be consistent

● “Address-of” operator & gets a variableʼs address
● “Dereference” operator * refers to the pointed-to datum

● Example code:

● Example diagram:

6

int* ar = (int*) malloc(3*sizeof(int)); // reference
int* p = &ar[1]; // iterator
*p = 3;

0x1b126b0

0x1b126b4

? 3 ?
ar

p

Output Parameters

7

Output Parameters

● Recall: the return statement in a function passes a single value back
through the %rax register

8

● An output parameter is a C idiom that emulates “returning values”
through parameters:
○ An output parameter is a pointer (i.e., the address of a location in

memory)
○ The function with this parameter must dereference it to change the value

stored at that location
○ The new value is “returned” by persisting after the function returns

● Output parameters are the only way in C to achieve returning multiple
values

Exercise 1

9

Exercise 1

● Which parameters are output
parameters?

● What should go in the division
blanks?

● What should go in the printf
blanks?

10

void division(int numerator,
 int denominator,
 int* quotient,
 int* remainder) {
 *quotient = numerator / denominator;
 *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
 int quot, rem;
 division(22, 5, _____, _____);
 printf("%d rem %d\n", _____, _____);
 return EXIT_SUCCESS;
}

quotient and remainder

" and &rem

quot and rem

Exercise 1

● Draw out a memory diagram of the
beginning of this call to division.

12

void division(int numerator,
 int denominator,
 int* quotient,
 int* remainder) {
 *quotient = numerator / denominator;
 *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
 int quot, rem;
 division(22, 5, _____, _____);
 printf("%d rem %d\n", _____, _____);
 return EXIT_SUCCESS;
}

?quot ?rem

quotient remainder

numerator 22 denominator 5

C-Strings

14

C-Strings

● A string in C is declared as an array of characters that is terminated by a null
character '\0'

● When allocating space for a string, remember to add an extra element for the null
character

15

char str_name[size];

Initialization Examples

● Code:

● Memory:

● Notes:
○ Both initialize the array in the declaration scope (e.g., on the stack if a local var), though

the latter can be thought of copying the contents from the string literal into the array
○ The size 6 is optional, as it can be inferred from the initialization

16

// list initialization
char str1[6] = {'H','e','l','l','o','\0'};
// string literal initialization
char str2[6] = "Hello";

index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

Common String Literal Error

● Code:

● Memory:

● Notes:
○ By default, using a string literal will allocate and initialize the character array in

read-only memory (Literals)

17

index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

// pointer instead of an array
char* str3 = "Hello";

0x402037str3

Common String Literal Error

● Code:

● Memory:

● Notes:
○ By default, using a string literal will allocate and initialize the character array in

read-only memory (Literals)
○ What would happen if we executed str3[0] = 'J';?

18

index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

// pointer instead of an array
char* str3 = "Hello";

0x402037str3

Segfault!

Exercise 2

19

void bar(char ch) {
 ch = '3';
}

int main(int argc, char* argv[]) {
 char fav_class[] = "CSE331";
 bar(fav_class[5]);
 printf("%s\n", fav_class); // should print "CSE333"
 return EXIT_SUCCESS;
}

char ch
bar stack frame

21

Modifying the argument ch in bar will not affect fav_class in
main() because arguments in C are always passed by value.

In order to modify fav_class in main(), we need to pass a pointer
to a character (char*) into bar and then dereference it:

void bar_fixed(char* ch) {
 *ch = '3';
}

The following code has a bug. Whatʼs the problem, and how would you fix it?

char[] fav_class
main stack frame 'C' '\0''S' 'E' '3' '3' '1'

'1''3'

void bar_fixed(char* ch) {
 *ch = '3';
}

int main(int argc, char* argv[]) {
 char fav_class[] = "CSE331";
 bar(&fav_class[5]);
 printf("%s\n", fav_class); // should print "CSE333"
 return EXIT_SUCCESS;
}

22

Modifying the argument ch in bar will not affect fav_class in
main() because arguments in C are always passed by value.

In order to modify fav_class in main(), we need to pass a pointer
to a character (char*) into bar and then dereference it:

void bar_fixed(char* ch) {
 *ch = '3';
}

The following code has a bug. Whatʼs the problem, and how would you fix it?

char[] fav_class
main stack frame 'C' '\0''S' 'E' '3' '3' '1''3'

char* ch
bar_fixed stack frame

Setting Up git

23

gcc 11

● CSE Lab machines and the attu cluster have been updated to use gcc 11.

● As such weʼll be using gcc 11 this quarter

● To verify that youʼre using gcc 11 run:
○ gcc -v or
○ gcc --version

● If you use the CSE Linux home VM, you need to use the newer version even if
you have an older one installed (i.e., 22au or later).

24

Git Repo Usage

25

● Try to use the command line interface (not Gitlabʼs web interface)

● Only push files used to build your code to the repo
○ No executables, object files, etc.
○ Donʼt always use git add . to add all your local files

● Commit and push when an individual chunk of work is tested and done
○ Donʼt push after every edit
○ Donʼt only push once when everything is done

git/Gitlab Reference

We have a page that details how to (1) set up Gitlab and (2) use git to manage
your repo (solo or with a partner):
● https://courses.cs.washington.edu/courses/cse333/23wi/gitlab/

We asked you to attempt your Gitlab setup ahead of time:
● If you didnʼt, please do so now on your CSE Linux environment setup
● If you did and ran into issues, weʼll walk around to help you now

26

https://courses.cs.washington.edu/courses/cse333/23wi/gitlab/

