
CSE 333
Section 1
C, Pointers, and Gitlab
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Logistics
● Pre-Quarter Survey:

○ Due Friday (tomorrow!) @ 11:59pm (1/06)
● Exercise 1:

○ Due Monday @ 11:00am (1/09)
● Homework 0:

○ Due Monday @ 11:59pm (1/09)
○ Meant to acquaint you to your repo and project logistics
○ Must be done individually (future HW in partners)
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Icebreaker!

Please turn to the people next to you and share:

● Name and Year

● What are you excited about in 333?

● Favorite type of peanut butter (Creamy, Chunky, no preference/allergic)
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Pointer Review
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Pointers

● Data type that stores the address of (the lowest byte of) a datum
○ Can draw an arrow in memory diagrams from pointer to pointed to data, 

particularly if actual value (stored address) is unknown
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● Common uses:
○ Reference to data allocated elsewhere (e.g., malloc, literals, files)
○ Iterators (e.g., data structure traversal)
○ Data abstraction (e.g., head of linked list, function pointers)



Pointer Syntax and Semantics

● Declared as type* name; or type *name;
○ Doesnʼt matter, just be consistent

● “Address-of” operator & gets a variableʼs address
● “Dereference” operator * refers to the pointed-to datum

● Example code:

● Example diagram:
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int* ar = (int*) malloc(3*sizeof(int));  // reference
int* p = &ar[1];  // iterator
*p = 3;

0x1b126b0

0x1b126b4

? 3 ?
ar

p



Output Parameters
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Output Parameters

● Recall:  the return statement in a function passes a single value back 
through the %rax register 
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● An output parameter is a C idiom that emulates “returning values” 
through parameters:
○ An output parameter is a pointer (i.e., the address of a location in 

memory)
○ The function with this parameter must dereference it to change the value 

stored at that location
○ The new value is “returned” by persisting after the function returns

● Output parameters are the only way in C to achieve returning multiple 
values



Exercise 1
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Exercise 1

● Which parameters are output 
parameters?

● What should go in the division 
blanks?

● What should go in the printf 
blanks?
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void division(int  numerator,
              int  denominator,
              int* quotient,
              int* remainder) {
  *quotient = numerator / denominator;
  *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
  int quot, rem;
  division(22, 5, _____, _____);
  printf("%d rem %d\n", _____, _____);
  return EXIT_SUCCESS;
}

quotient and remainder

&quot and &rem

quot and rem



Exercise 1

● Draw out a memory diagram of the 
beginning of this call to division.
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void division(int  numerator,
              int  denominator,
              int* quotient,
              int* remainder) {
  *quotient = numerator / denominator;
  *remainder = numerator % denominator;
}

int main(int argc, char* argv[]) {
  int quot, rem;
  division(22, 5, _____, _____);
  printf("%d rem %d\n", _____, _____);
  return EXIT_SUCCESS;
}

?quot ?rem

quotient remainder

numerator 22 denominator 5



C-Strings
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C-Strings

● A string in C is declared as an array of characters that is terminated by a null 
character '\0'

● When allocating space for a string, remember to add an extra element for the null 
character
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char str_name[size];



Initialization Examples

● Code:

● Memory:

● Notes:
○ Both initialize the array in the declaration scope (e.g., on the stack if a local var), though 

the latter can be thought of copying the contents from the string literal into the array
○ The size 6 is optional, as it can be inferred from the initialization
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// list initialization
char str1[6] = {'H','e','l','l','o','\0'};
// string literal initialization
char str2[6] = "Hello";

index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'



Common String Literal Error

● Code:

● Memory:

● Notes:
○ By default, using a string literal will allocate and initialize the character array in 

read-only memory (Literals)
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index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

// pointer instead of an array
char* str3 = "Hello";

0x402037str3



Common String Literal Error

● Code:

● Memory:

● Notes:
○ By default, using a string literal will allocate and initialize the character array in 

read-only memory (Literals)
○ What would happen if we executed str3[0] = 'J';?
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index 0 1 2 3 4 5

value 'H' 'e' 'l' 'l' 'o' '\0'

// pointer instead of an array
char* str3 = "Hello";

0x402037str3

Segfault!



Exercise 2
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void bar(char ch) {
  ch = '3';
}

int main(int argc, char* argv[]) {
  char fav_class[] = "CSE331";
  bar(fav_class[5]);
  printf("%s\n", fav_class);  // should print "CSE333"
  return EXIT_SUCCESS;
}

char ch
bar stack frame
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Modifying the argument ch in bar will not affect fav_class in 
main() because arguments in C are always passed by value. 

In order to modify fav_class in main(), we need to pass a pointer 
to a character (char*) into bar and then dereference it:

void bar_fixed(char* ch) {
  *ch = '3';
}

The following code has a bug. Whatʼs the problem, and how would you fix it?

char[] fav_class 
main stack frame 'C' '\0''S' 'E' '3' '3' '1'

'1''3'



void bar_fixed(char* ch) {
  *ch = '3';
}

int main(int argc, char* argv[]) {
  char fav_class[] = "CSE331";
  bar(&fav_class[5]);
  printf("%s\n", fav_class);  // should print "CSE333"
  return EXIT_SUCCESS;
}
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Modifying the argument ch in bar will not affect fav_class in 
main() because arguments in C are always passed by value. 

In order to modify fav_class in main(), we need to pass a pointer 
to a character (char*) into bar and then dereference it:

void bar_fixed(char* ch) {
  *ch = '3';
}

The following code has a bug. Whatʼs the problem, and how would you fix it?

char[] fav_class 
main stack frame 'C' '\0''S' 'E' '3' '3' '1''3'

char* ch
bar_fixed stack frame



Setting Up git
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gcc 11

● CSE Lab machines and the attu cluster have been updated to use gcc 11.

● As such weʼll be using gcc 11 this quarter

● To verify that youʼre using gcc 11 run:
○ gcc -v or
○ gcc --version

● If you use the CSE Linux home VM, you need to use the newer version even if 
you have an older one installed (i.e., 22au or later).
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Git Repo Usage
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● Try to use the command line interface (not Gitlabʼs web interface)

● Only push files used to build your code to the repo
○ No executables, object files, etc.
○ Donʼt always use git add . to add all your local files

● Commit and push when an individual chunk of work is tested and done
○ Donʼt push after every edit
○ Donʼt only push once when everything is done



git/Gitlab Reference

We have a page that details how to (1) set up Gitlab and (2) use git to manage 
your repo (solo or with a partner):
● https://courses.cs.washington.edu/courses/cse333/23wi/gitlab/

We asked you to attempt your Gitlab setup ahead of time:
● If you didnʼt, please do so now on your CSE Linux environment setup
● If you did and ran into issues, weʼll walk around to help you now
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https://courses.cs.washington.edu/courses/cse333/23wi/gitlab/

