CSE 333
Section 1

C, Pointers, and Gitlab

W UNIVERSITY of WASHINGTON

Logistics

e Pre-Quarter Survey:
o Due Friday (tomorrow!) @ 11:59pm (1/06)

e Exercise 1:
o DueMonday @ 11:00am (1/09)

e Homework O:
o DueMonday @ 11:59pm (1/09)
o Meant to acquaint you to your repo and project logistics
o Must be done individually (future HW in partners)

Icebreaker!

Please turn to the people next to you and share:

e Name and Year
e What are you excited about in 3337

e Favorite type of peanut butter (Creamy, Chunky, no preference/allergic)

Pointer Review

Pointers

e Data type that stores the address of (the lowest byte of) a datum
o Candraw an arrow in memory diagrams from pointer to pointed to data,
particularly if actual value (stored address) is unknown

e Common uses:
o Reference to data allocated elsewhere (e.g., ma'lloc, literals, files)
o lterators (e.g., data structure traversal)
o Data abstraction (e.g., head of linked list, function pointers)

Pointer Syntax and Semantics

e Declaredas typex name; or type *name;
o Doesn’t matter, just be consistent
e “Address-of” operator & gets a variable’s address
e “Dereference” operator * refers to the pointed-to datum

[Example code: intx ar = (intx) malloc(3*sizeof(int)); // reference
intx p = &ar[1l]; // iterator
*p = 33

e Example diagram: ar |ex1b126be

p [ex1b126b4

Output Parameters

Output Parameters

e Recall: the return statementin a function passes a single value back
through the %rax register

e Anoutput parameteris a C idiom that emulates “returning values”
through parameters:
o Anoutput parameter is a pointer (i.e., the address of a location in

memory)
o The function with this parameter must dereference it to change the value

stored at that location
o The new value is “returned” by persisting after the function returns

e Output parameters are the only way in C to achieve returning multiple
values

Exercise 1

Exercise 1

. void division(int numerator
e Which parameters are output (int denominator
J
parameters? int* quotient,
int*x remainder) {
*quotient = numerator / denominator;
*remainder = numerator % denominator;

quotientand remainder

e Whatshould gointhedivision ¥
blanks? int main(int argc, char*x argv[]) {
" and &rem int quot, rem;
division(22, 5, ,)5
.) printf("%d rem %d\n", ,)
e Whatshouldgointheprintf return ;
blanks? }

quot and rem

Exercise 1

. void division(int numerator,
e Draw outa memory diagram of the int denominator
)

beginning of this callto division. intx quotient,
int*x remainder) {
*quotient = numerator / denominator;

*remainder = numerator % denominator;
quot | ? rem| ? }
int main(int argc, charx argv[]) {
int quot, rem;
. i . division(22, 5, s)3
quotient remainder printf("%d rem %d\n", ,)
return S

numerator | 22 denominator | 5 b

12

C-Strings

C-Strings

char str_name[13

e Astringin Cisdeclared as an array of characters that is terminated by a null
character '\0'

e When allocating space for a string, remember to add an extra element for the null
character

15

Initialization Examples

o Code: // list initialization
char stri[6] = {'H','e','l','l','0',"\0"};
// string literal initialization
char str2[6] = "Hello";
e Memory: index 0 1 2 3 4 5
Value lHl lel I'LI I'Ll lol I\Ol
e Notes:

o Bothinitialize the array in the declaration scope (e.g., on the stack if a local var), though
the latter can be thought of copying the contents from the string literal into the array

o Thesize 6isoptional, as it can be inferred from the initialization y

High

Address Space:

Stack

Dynamic Data
(Heap)

—_— —

Static Data

Literals

Instructions

Addresses A OXF..F
Common String Literal Error
® COde: . . Memory
// pointer instead of an array addrese
charx str3 = "Hello";
e Memory: str3 | 0x402037 o Loxo.o
index / 0 1 2 3 4 5
Value IHI Iel I'LI I'Ll lol I\Ol
e Notes:

o By default, using a string literal will allocate and initialize the character array in

read-only memory (Literals)

17

Common String Literal Error

High

Addresses 4 0xF..F

Address Space:

Stack

—_— —

Dynamic Data
(Heap)

Static Data

Literals

Instructions

® COde: . . Memory
// pointer instead of an array addrese
charx str3 = "Hello";
e Memory: str3 | 0x402037 o Loxo.o
index / 0 1 2 3 4 5
Value IHI Iel I'LI I'Ll lol I\Ol
e Notes:

o By default, using a string literal will allocate and initialize the character array in

read-only memory (Literals)

o What would happen if we executed str3[0]

— 'J';?

Segfault!

18

Exercise 2

The following code has a bug. What’s the problem, and how would you fix it?

void bar(char ch) {
mch = '3"; char[] fav_class

-]} main stack frame ",C, iselier [rsr]z e e

int main(int argc, charx argv[]) {
m char fav_class[] = "CSE331"; char ch |z
= bar (fav_class[5]); bar stack frame
wmpprintf ("%s\n", fav_class); // should print "CSE333"

return 5

}

Modifying the argument ch in bar will not affect fav_class in
main () because argumentsin C are always passed by value.

In order to modify fav_classinmain(), we need to pass a pointer
to a character (charx) into bar and then dereference it:

void bar_fixed(charx ch) {
*ch = '3';

}

The following code has a bug. What’s the problem, and how would you fix it?

void bar_fixed(char*x ch) {
= *xch = '3';
- } main stack frame

int main(int argc, char* argv[]) {
char fav_class[] = "CSE331";

= har (&fav_class[5]);

wp Printf("%s\n", fav_class); // should print "CSE333"
return 5

bar_f1ixed stack frame

}

Modifying the argument ch in bar will not affect fav_class in
main () because argumentsin C are always passed by value.

In order to modify fav_classinmain(), we need to pass a pointer
to a character (charx) into bar and then dereference it:

void bar_fixed(charx ch) {
*ch = '3';

}

char[] fav_class

|||Cl ISI IEI

|3| l3| l3l

l\oll

L

char*x ch

~

J

SettingUp git

gcc 11

e CSE Lab machines and the attu cluster have been updated touse gcc 11.
e Assuchwe’ll beusing gcc 11 this quarter

e To verify that you’re using gcc 11 run:
o gcc -vor
0O gcc --version

e If you use the CSE Linux home VM, you need to use the newer version even if
you have an older one installed (i.e., 22au or later).

24

Git Repo Usage

e Trytousethe command line interface (not Gitlab’s web interface)

e Only push files used to build your code to the repo
O No executables, object files, etc.
O Don’talwaysusegit add . toaddallyourlocalfiles

e Commitand push when an individual chunk of work is tested and done
O Don’t push after every edit
O Don’t only push once when everything is done

25

git/Gitlab Reference

We have a page that details how to (1) set up Gitlab and (2) use git to manage

your repo (solo or with a partner):
® https://courses.cs.washington.edu/courses/cse333/23wi/gitlab/

We asked you to attempt your Gitlab setup ahead of time:
e Ifyoudidn’t, please do so now on your CSE Linux environment setup
e Ifyoudid andranintoissues, we’ll walk around to help you now

26

https://courses.cs.washington.edu/courses/cse333/23wi/gitlab/

